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Abstract 

CROSS-MODAL PROJECTIONS FROM AUDITORY TO VISUAL CORTICES 

IN THE FERRET 

By Meng Y. Wang 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2006 

Major Director: M. Alex Meredith, Ph.D. 
Professor 

Department of Anatomy and Neurobiology 

Recent studies have shown that neuronal connections occur between primary auditory and 

visual cortices of the primate (Falchier et al., 2002; Rockland and Ojima, 2003), and it has 

been suggested that these projections are involved in multisensory processing in these 

lower-level, core areas of cortex. The present study was conducted to determine if similar 

connections occur in other higher mammals such as carnivores (ferrets; Mustela putorius). 

Large injections of sensitive neuroanatomical tracer were placed within the core areas of 

auditory cortex in 3 ferrets. After transport and processing, labeled axon terminals were 
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found not in primary visual cortex, but in area 19, or V3. Injection of tracer into V3 of 3 

additional ferrets produced retrogradely labeled neurons not in the core region of auditory 

cortex, but along its posterior borders. These data indicate that cross-modal connections 

occur in the ferret cortex, but do not support the notion that they exist between the primary 

representations of the different sensory modalities. 
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Introduction 

Even the most recent neuroscience textbooks describe the different sensory systems 

separately. Contained with these books are individual chapters for vision, hearing and 

somatosensation, while other subchapters detail the properties of taste and smell on their 

own. By reducing the variables that accompany the different sensory modalities, it is 

probably assumed that it is easier to learn about these topics in this segregated fashion. 

Similarly, the research laboratory strives to conduct controlled experiments in which a 

single parameter is systematically manipulated. Introduction of stimuli fiom more than 

one modality during experimentation can be difficult to control experimentally, and 

consequently the vast majority of investigations into sensory processing have dealt with 

the features of a single modality. The brain, however, is not such a privileged organ. It 

must deal with a constantly changing environment in which multiple stimuli often occur at 

the same time. 

How the brain processes simultaneous information fiom different sensory 

modalities has been the topic of numerous recent studies. It has been shown that 

multisensory stimulation can improve detection of weak stimuli, as in the hunting behavior 

of some predators (Stein et al., 1989). Multisensory stimulation also in~proves speech 

perception, and watching lips move while listening to speech not only helps in 

understanding speech, it also helps in sorting out the source of the speaker if in a crowded, 

noisy room (Sumby and Pollack, 1954). In fact, there are myriads of multisensory 

perceptual and behavioral effects that have been documented across the animal kingdom 
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(Stein and Meredith, 1993). Given the universality of multisensory processing, it is 

somewhat surprising that so little attention is given to it in neuroscience instruction and 

textbooks. 

The first requisite step in multisensory processing is for information (synaptic 

input) from more than one sensory modality to converge onto individual neurons. This is 

also an apparently widespread phenomenon, and has been observed at various locations 

throughout the brain (Stein and Meredith, 1993). When these different inputs converge 

onto individual neurons and arrive within an appropriate time frame, then the responses 

from one modality are merged with those from the other to produce an integrated response. 

This integrated response can either be elevated-as in multisensory response enhancement, 

or reduced-as in multisensory response depression (Meredith and Stein, 1983). These 

integrated response products are not random, but are predictable based on the spatial and 

temporal relationships of the stimuli evoking the response (Meredith and Stein, 1986; 

1996; Meredith et al., 1987). These same stimulus factors, which control multisensory 

integration at the neuronal level, also function to determine multisensory orientation and 

detection behaviors (Stein et al., 1989). Thus, multisensory convergence leads to 

multisensory integration that influences behavioral or perceptual outcomes. However, it is 

curious that very little is known about multisensory convergence at the neuronal level. 

Multisensory convergence is known to occur in a large number of brain areas. 

Most notably, these multisensory areas include the superior colliculus in the midbrain and 

higher-level polysensory cortical regions (Stein and Meredith, 1993). Not only have 

anatomical studies demonstrated that inputs from different modalities converge in these 
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areas, but physiological studies have identified individual neurons that responded to 

stimuli fiom more than one modality (i.e., multisensory neurons). For many years, 

multisensory areas have been exclusively regarded as those higher-level areas close to the 

initiation of behavior or perception, leaving the lower-, primary cortices as reservoirs of 

modality-specific (unimodal) information. However, recent studies have shown that 

multisensory convergence not only occurs in lower levels of cortex (Schroeder et al., 2001) 

but also within of the primary sensory representations themselves (Falchier et al., 2002; 

Rockland and Ojima, 2003). These studies show that inputs fiom auditory and 

somatosensory cortices directly access portions of primary visual cortex in primates. 

These findings have had profound effect on our understanding of the organization of the 

brain. However, they have not been repeated in less complex animals or in other classes of 

mammals, such as carnivores. Therefore, the present experiment sought to determine 

whether direct connections between auditory and primary visual cortex can be 

demonstrated in the ferret. 

The primary sensory cortices of the ferret have been mapped, as has many of their 

higher-level regions. The entire extent of the auditory cortex of the ferret is centered on 

the ectosylvian gyrus, as depicted in Figure 1. It has been anatomically divided into 3 

areas, one located on the middle ectosylvian gyrus (MEG), one on the posterior ectosylvian 

gyrus (PEG), and another one on the anterior ectosylvian gyrus (AEG) (Wallace et al., 

1997). These cortices have now been divided into 6 distinctive areas. The first of these to 

be identified were the primary auditory cortex Al,  and the anterior auditory field, AAF, 

both of which were located in the middle ectosylvian gyrus. A later study found four other 
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areas. Posteriorly, the PEG was divided into two auditory areas: the posterior 

pseudosylvian field (PPF), and the posterior suprasylvian field (PSF). Anteriorly, the AEG 

was subdivided into two additional auditory areas, which were named the anterior dorsal 

field (ADF), and the anterior ventral field (AVF) (Bizley, et al., 2005). Aside from A1 and 

AAF, homologies with similar areas in cats or other mammals have not been determined. 

In contast, a ferrets' visual system very closely resembles that of the cat, which has been 

studied and characterized extensively. Using different techniques to study 

cytoarchitechture, myeloarchitecture, and cytochrome oxidase reactivity, the visual areas 

of the ferret (areas 17, 18, 19, and 2 1) can be clearly distinquished (Innocenti, et al., 2002; 

Manger, et al., 2002). As depicted in Figure 1, these visual areas reside in or near the 

occipital pole of the 'ferret cortex and occupy the posterior portions of the lateral and 

syprasylvian gyri and the lateral sulcus. 

Given the established sensory organization of the ferret cortex, the present 

experiments used sensitive neuroanatomical tracers to examine whether the auditory 

regions, in particular the core auditory areas of AIIAAF, project to the primary visual area 

of V llarea 17, as depicted in Figure 2. 
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Figure 1: Anatomical and functional representation of the ferret cerebral cortex. The top 
figure displays the anatomical names of the gyri and the sulci of the ferret cerebral cortex. 
The auditory cortex is concentrated mostly in the middle ectosylvian g p s .  The visual 
cortex is concentrated mostly in the posterior part of the lateral sulcus. The bottom figure 
displays the fi~nctional representation of the ferret cerebral cortex. Brodmann's areas 17, 
18, 19, and 21 represent the visual cortex. The somatosensory regions are represented by 
S1 of the body and S2 of the face. The auditory cortex are represented by the following: 
anterior auditory field (AAF); anterior dorsal field (ADF); anterior ventral field (AVF); 
primary auditory cortex (Al); posterior pseudosylvian field (PPF); and posterior 
suprasylvian field (PSF). 
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Figure 1: Anatomical and hnctional representation of the ferret cerebral cortex. 
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Figure 2. The research question: Do primary auditory and visual cortical regions in the 
ferret connect? 
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Figure 2. The research question 
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MATERIALS AND METHODS 

All procedures were performed in compliance with the Guide for Care and Use of 

Laboratory Animals (NIH publications 86-23) and approved by the Institutional Animal 

Care and Use Committee at Virginia Commonwealth University. 

Surgical Preparation 

Pigmented ferrets (n=6) were anaesthetized (sodium pentobarbital; 40 mglkg) and 

their head were positioned within a stereotaxic frame. Under aseptic surgical conditions, a 

craniotomy and durectomy were performed to expose either primary visual or auditory 

cortical regions. A Hamilton syringe (-5 p1,3 1-gauge needle), supported by a modified 

electrode carrier, was inserted into the selected cortical area to a depth of between 1.0 mm 

and 2.0 mm. The neuroanatomical tracer biotinylated dextran amine (BDA; 10,000 

mol.wt; lysine fixable; 10% in 0.1 M phosphate buffer) was pressure injected at a rate of 

15 nllmin. BDA was chosen because its properties - good solubility in water, low toxicity, 

and uncommon a-1,6-polyglucose linkages - make it an ideal long-term tracer of neuronal 

projections, both in the anterograde and retrograde directions. The specific injection sites 

and volume of each injection are detailed in Table 1. Three animals were used to trace 

orthograde projections from auditory to visual cortices; three other animals were used to 

identify the location of auditory neurons retrogradely labeled from visual cortex. Cortical 

landmarks, such as gyri and sulci, were used to guide the positioning of each injection. 

These landmarks are summarized for auditory and visual cortices in the ferret in Figure 1. 

Auditory cortical injections were focused on the middle ectosylvian gyms; visual cortical 

9 
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injections targeted the posterior end of the lateral sulcus. Once the desired volume of 

tracer was injected, the needle was retracted, the cortex was covered with gel foam, the 

scalp was sutured closed and standard post-operative procedures were provided. 

Histological Processing 

There was a 7-9 day survival period, in which then the animals were overdosed 

(120 mglkg sodium pentobarbital) and perfused intracardially with heparinized saline 

followed by fixative (4.0% paraformaldehyde, 0.1 % glutaraldehyde). The brain was 

exposed, blocked stereotaxically and cryoprotected in 25% sucrose in 0.1 M phosphate 

buffer at 4OC. Coronal sections were cut at 50 pm using a freezing microtome and 

collected serially. One series of sections, saved at 250 pm intervals, was processed for 

visualization of BDA using the avidin-biotin peroxidase method, according to the protocol 

of Veenman et al. (1992) and intensified using nickel-cobalt. 

Data Analysis 

The BDA labeled neurons or processes (e.g., axons, boutons, axon terminals) were 

visualized using a light microscope (Nikon Eclipse 600) and their location in their 

respective tissue section plotted using a PC-driven digitizing stage controlled by 

Neurolucida software (MicroBrightfield, Inc., Williston, VT, USA). Sections selected for 

plotting were serially arranged and were approximately 750 urn apart through the target 

area. Each tracing included the section outline, the border between gray and white matter, 

the position of the injection site, labeled neurons, and axonal boutons. Labeled axonal 

boutons appeared as sharp, black swellings at the end of thin axonal stalks or equal-sized 
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swellings along each side of the axon length. BDA-labeled neurons were identified as 

densely black in their core that sometimes spread into the distal dendrites. Some neurons 

were of a lighter, reddish-brown label. Tissue outlines, gray and white border, and 

injection sites were plotted using a 40X magnification. Labeled neurons and axonal 

boutons were plotted using a 200X magnification. The Neuroleucida software kept a count 

of numbers of identified neurons and axonal boutons. The plotted sections from each 

animal case were then arranged serially and graphically displayed using Adobe Photoshop 

software (Adobe Systems, Inc., San Jose, CAY USA). Gyral and sulcal landmarks were 

used to identify labeled regions and to correlate them with hnctionally distinct regions of 

cortex. 
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Table 1. Injection Sites and Volumes of Auditory and Visual Cortices 

ORTHODGRADE: To identify labeled boutons in visual cortex 

RETROGRADE: To identify labeled neurons in auditory cortex 

Ferret A1 # 1 

Ferret A1 #2 

Ferret A1 #3 

# of Injections 

3 injections 

3 injections 

4 injections 

AudCTX#7 

AudCTX#8 

AudCTX#9 

Amount per injection 

0.4; 0.7,O.g 1-11 

0.4; 1.1 ; 0.6 pl 

0.5; 0.75; 0.7 0.5 p1 

# of Injections 

1 injection VIS CTX 

1 injection VIS CTX 

6 injections VIS CTX 

Amount per injection 

0.8 pl 

0.9 pl 

1.8 pl total 
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RESULTS 

Orthograde projections from auditory cortex 

Three adult ferrets were used to examine orthograde projections from auditory to 

visual cortex. In each case, sulcal and gyral landmarks were used to identify the location 

of primary auditory cortex and multiple injections were centered upon, but did not 

exclusively label this region. In fact, most of the cases involved injections that not only 

filled portions of primary auditory cortex (AI), but also included its adjoining neighbors of 

AAF, ADF, PPF and PSF. 

. Examples of labeled auditory boutons in visual cortex are illustrated in the 

micrographs shown in Figure 3. In these and the other cases, long filled axons were often 

interrupted by symmetrical swellings, or boutons in passage. In addition, labeled boutons 

at the ends of short axon stalks, or terminal boutons, were also observed. Tracer injections 

into ferret auditory cortices consistently produced terminal labeling in a restricted area of 

visual cortex. The area in which labeled boutons were most reliably found was in or 

around the posterior end of the lateral sulcus, corresponding to area 19N3. In the three 

cases examined, a total of 27565 boutons were plotted in this area from 18 coronal 

sections. In the first case, a total of 3710 boutons were plotted. In the second case, a total 

of 12929 boutons were plotted. In the third case, a total of 10926 boutons were plotted. 

These data are illustrated in Figure 4. In each case, labeled boutons were found primarily 

in the banks and fundus of the posterior end of the lateral sulcus, corresponding to the 
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location of area 19N3. In no case were there boutons observed on the posterior aspects of 

the lateral gyrus, where area 17N1 is located. In relation to the boutons found in area 

19N3, there were almost twice of many found in the lateral part of the fundus than the 

medial part (19246 versus 8318, respectively; see Table 2) and this difference was 

statistically significant (paired student's T- test; p<0.001). Figure 5 summarizes difference 

in the percentage of boutons found in the medial versus the lateral parts of the sulcus. In 

addition, the three cases consistently showed fewer boutons at the far anterior and posterior 

ends of the lateral sulcus, while the highest number of boutons was found in between the 

two ends (see Table 2). 

Retrograde labeling from visual cortex 

Three adult ferrets were used to confirm the auditory cortical origin of projections 

to visual cortices. Tracer was injected into area 19 (see Table 1 for injection volume) and 

retrogradely labeled neurons were identified in sections through the auditory cortex. As 

illustrated in Figure 6, these labeled neurons had the morphology typical of pyramidal 

neurons, which are known to be the projection neurons of the cortex. A total of 1 14 

neurons were identified and plotted, almost all of which occurred in the only posterior 

parts of the auditory cortices. The distribution of neurons in auditory cortex retrogradely 

labeled from visual area 19N3 is illustrated in Figurel. Only a few retrogradely labeled 

neurons were found in auditory areas outside this posterior portion of auditory cortex. In 
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the two remaining cases, very small, restricted injections were made into area 19 and no 

retrogradely labeled neurons were observed in the auditory cortex in these animals. 
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Figure 3. Micrographs depicting the labeled auditory axons and terminals in visual 
cortex. Photomicrographs taken through the lateral sulcus/area 19 showing labeled axons 
and boutons resulting from injections made in auditory cortex (x 1000/oil; bar = 10 pm). 
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Figure 3. Micrographs depicting the labeled auditory axons and terminals in visual 
cortex 
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Figure 4. Orthograde projections from auditory to visual cortex. This figure 
summarizes the tracer injection sites and distribution, as well as resulting projection 
termination, for 3 cases (A-C). In each case, coronal sections through auditory and visual 
cortices show either the extent of the tracer injection (dark grey areas) in auditory cortex or 
the location of labeled axon terminals (each dot = 1 bouton) in visual cortex. Npte that in 
each case labeled boutons were found within the banks of the posterior end of the lateral 
sulcus; this area corresponds to area 19 of the ferret visual cortex. The density of labeled 
boutons diminished at more posterior levels; few labeled boutons were found outside this 
region anywhere else in visual cortex. The inset (box) shows a lateral view of the brain 
and summarizes the location of auditory cortical injection sites as well as the location 
(vertical lines) through the brain from which the coronal sections were taken. Sections 
derived from more anterior portions of the brain are on left, while the posterior is on the 
right. 
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Figure 4. Orthograde projections from auditory to visual cortex 

A. Case 1 Auditory Cortex Injection 

B. Case 2 Auditorv Cortex lniection 

C. Case 3 Auditory Cortex lnjection 
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Table 2: Counts of boutons in visual area 19 labeled from auditory cortex: medial 
versus lateral distribution 

I Total for AudFerret 3 1656 1 9269 1 10926 1 
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Figure 5. Auditory boutons tend to target the lateral bank of Area 19. This graph 
summarizes the medial-lateral distribution of auditory boutons observed in the banks 
and the fbndus part of the posterior end of the lateral sulcus. Proportionally more auditory 
boutons were found in the lateral than medial parts of the lateral sulcus, and this difference 
was statistically significant (asterisk; paired ?'-test; p<0.001). 
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Figure 5. Auditory boutons tend to target the lateral bank of Area 19 

Auditory Boutons in Area 19 

I I 

Medial Lateral 
Location 
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Figure 6. Micrograph depicting an auditory neuron retrogradely labeled from visual 
cortex. The micrograph shows a typical pyramidal neuron in posterior auditory cortex 
with filled apical and basilar dendrites, retrogradely labeled from visual area 19N3 
(1000x/oil; scale bar = 10 pm). 
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Figure 6. Micrograph depicting an auditory neuron retrogradely labeled from visual 
cortex 
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Figure 7. Neurons in auditory cortex retrogradely labeled from a visual cortical 
injection. The top row shows coronal sections through the auditory cortices (anterior= 
left); each dot represents the location of one retrogradely labeled neuron. The coronal 
sections on the bottom-right show the location and distribution of the tracer injection (dark 
grey areas) placed within the posterior end of the lateral sulcus (visual area 19). The 
schematic of the ferret brain (bottom-left) shows the location of the auditory cortices 
(dashed lines), the injection site (dark grey area), and the level from which the auditory 
cortical coronal sections (top) were taken. 
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Figure 7. Neurons in auditory cortex retrogradely labeled from a visual cortical 
injection 

Audferret 9, Visual Cortex lniection 
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DISCUSSION 

The results of these experiments show that direct, cross-modal connections do occur within 

the ferret cerebral cortex. Specifically, projections arising in relation to auditory cortex 

terminate within other areas well established to represent the visual modality. Although 

the injections used to demonstrate these projections were multiple and quite large, the 

retrograde experiments established that the projection actually originates in the posterior 

aspects of the auditory cortex, within the posterior limb of the Suprasylvian sulcus and 

posterior to the areas designated as A1 and PSF. In fact, the region(s) giving rise to this 

cross-modal projection correspond with areas of the ferret cortex, buried in the banks of 

the posterior limb of the Suprasylvian sulcus, which have not yet been investigated. 

Nonetheless, given their position in relation to the major auditory cortical areas, it is very 

reasonable to expect that they also represent the auditory modality. Because these areas 

are not yet defined, they will be referred to hereon as the "Posterior Auditory Cortices 

(PAC)" 

Injections into the auditory cortices that included the PAC produced orthograde 

labeling and labeled axon terminals within aspects of the occipital lobes known to process 

visual signals. This terminal labeling was found along axons as well as in boutons of both 

the "in passage" and "terminal ending" types. However, terminal labeling was not found 

throughout the occipital cortices, but was restricted to only a small region on the lateral 

aspect of the lobe. The labeled region corresponds to the banks and the hndus of the 

posterior end of the lateral sulcus. This region (as well as the adjoining cortical areas) has 

been well examined in both hnctional and mapping studies (Wallace et al., 1997; Bizley, 
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et al., 2005; Innocenti, et al., 2002; Manger, et al., 2002) and has been designated as Area 

19 or the third visual area (V3). Therefore, because the projection arose in the auditory 

cortices and terminated in a well-documented visual area, this projection represents a 

cross-modal connection. 

Comparison with other cross-modal anatomical studies: 

The field of multisensory processing is a new field of neuroscience research that 

has seen an intense burst of recent interest. In fact, more papers have been published on 

multisensory processing since 1996 than in all previous years combined, (1276 vs. 844, 

respectively, as determined by PubMed search). However, very few studies have 

examined the anatomical basis for multisensory processing: multisensory convergence. 

All such studies have documented a form of multisensory convergence termed "areal 

convergence," where inputs from two different sensory modalities target the same neural 

area but possibly not the same neurons (e.g., "neuronal convergence"). Initially, such 

investigations revealed the now classic polyrnodal areas such as the Superior Temporal 

Suclus (STS) in primates (Seltzer and Pandya, 1994) or the Anterior Ectosylvian Sulcus in 

cats (Reinoso-Suarez and Roda, 1985). These observations have been replicated and 

enhanced by numerous subsequent investigations (Dehner et al., 2004; Meredith et al., 

2006). More recently, attention has been focused on cross-modal connections between 

primary sensory areas, such as A1 and VI. In fact, injections into primary auditory cortex 

in primates produced labeling in V1 (Falchier et al., 2002). However, these projections did 

not fill the entire V1 representation but targeted the representation of peripheral visual 

space to the exclusion of the central visual representation. Similarly, another study that 
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injected higher-level auditory areas (association areas) in primates found terminal labeling 

within the peripheral representation of visual space in both V1 and V2 of primates 

(Rockland and Ojima, 2003). By comparison, the present study found no evidence for 

projections from primary auditory cortex (AI) to the primary and secondary visual areas 

011, V2). Instead, the ferret cross-modal projection arose from higher-level auditory areas 

(PAC) and terminated in visual Area 19, or V3. Furthermore, the auditory projection to 

V3 in ferrets primarily innervated representations of inferior visual space, and labeled 

boutons in the central and superior representations were rarely observed. Thus, while the 

cross-modal projections in different species apparently do not influence the entire 

representation of visual space, significant differences among their targets (V1 vs. V2 or 

V3) justifies continued examination of this issue. 

Functional Implications: 

A projection from the representation of one sensory modality to that of another 

implicitly suggests that the activity in one will influence the responses of the other. This 

notion has been supported by numerous studies over the last 2 decades. Possibly the best 

studied multisensory structure is not in the cortex, but the midbrain: the superior colliculus. 

In this structure, inputs from visual, auditory and somatosensory modalities converge onto 

individual neurons. These neurons respond to each of these sensory inputs independently 

and, when stimuli from different sensory modalities are combined, produce an integrated 

response. Multisensory integration has been defined as a significant response change when 

activity evoked by the combined modality stimuli is compared to that elicited by the 
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individual component stimuli presented alone (Meredith and Stein, 1983; 1986). 

Multisensory integration can take the form of a response increase (response enhancement) 

or decrease (response depression)(Meredith and Stein, 1983). More recently, other forms 

of multisensory processing have been identified in cortex, whereby neurons responsive to 

one sensory modality (e.g., somatosensory) are unresponsive to others (e.g., vision, 

audition) but have their normal activity modulated (facilitated or suppressed) by the 

presence of stimuli from the otherwise 'uneffective' modality. In this fashion, cross-modal 

inputs produce a subthreshold effect that is apparent only when stimuli from different 

sensory modalities are combined (Dehner et al., 2004; Meredith et al., 2006). In summary, 

multisensory convergence can result in a wide range of fictional effects that span a 

continuum from suprathreshold excitation to subthreshold inhibition. Given this range of 

possible effects, without any concrete observations, it is not possible to guess the 

functional effect of the cross-modal projection described in the present study. However, 

electrophysiological recording experiments are currently being conducted to directly test 

this question. 
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CONCLUSION 

This study shows that a higher-level region of the posterior auditory cortex projects 

to the V3 visual area of the ferret. Although the effect of this projection is not known at 

this time, such a cross-modal connection can underlie a variety of multisensory behavioral 

andlor perceptual processes and may provide a model upon which further experiments can 

be conducted. 
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